幼儿园五大领域教育活动设计(46)

妈咪爱婴网 www.baby611.com 2013年03月05日 18:21:35

  幼儿从小班开始就能在感知的基础上进行简单的分类活动。但是在他们的思维中,还没有形成母类和子类之间的层级关系,更不知道整体一定大于部分。比如,给小班幼儿一些红圆片和绿圆片(红圆片数量较多,绿圆片数量较少),问幼儿:是红片片多还是片片多,他一直认为是红片片多。直到向他解释,片片指的是所有片片,而不是剩下的片片,他才作出了正确的回答。而他得到答案的方式也是耐人寻味的,他不是像我们所想像的那样靠逻辑判断,而是一一点数,得出红片片是8个,片片是10个,片片比红片片多。在这里,我们可以清楚地看到,在幼儿头脑中,整体与部分之间并没有形成包含关系,面是并列的两个部分的关系。他们并不能用整体与部分之间的关系来作逻辑判断,而至多是借助于具体的形象甚至是动作来理解包含关系,因此,还没有抽象的类包含的逻辑观念。

  以上分析说明,幼儿逻辑观念及其发展,为他们学习数学提供了一定的心理逻辑准备。但这些逻辑观念又都具有很大的局限性。也就是说,它们非常依赖于具体的动作和形象。如果幼儿面对的问题是和直接的外化的动作和形象相联系的,幼儿则有可能解决;如果是较为间接的需要内化于头脑的问题,幼儿就无能为力了。这个现象,正是由幼儿逻辑思维的特点所决定的。

  依据皮亚杰的理论,儿童智慧的发展可划分为四个阶段,即感知运算阶段;前运算阶段、具体运算阶段和形式运算阶段。3~6岁的幼儿基本上处于前运作阶段,其思维具有两个基本特点:一是思维的半逻辑,即思维是单向的,不可逆的;二是思维的逻辑建立在对客体的具体操作的基础上,需要通过作用于事物的动作去解答逻辑的思维问题。

  由于这两个特点的存在,我们可以清楚地看到:

  (1)幼儿的逻辑思维最初只能以其对动作(包括动作作用的具体事物的形象)的依赖为特点;(2)幼儿要在头脑中完全达到一种抽象水平的逻辑,则需要相当长的时间。之所以要这么长的时间,是因为儿童要在头脑中重新构建一个抽象的逻辑,不仅需要将动作内化于头脑中,还要能将这些内伦了的动作在头脑中自如地加以逆转,即达到一种可逆性。这对3-6岁的儿童来说,因受其思维发展水平的制约,要做到这一点并非一件容易的事。

  二、幼儿学习数学的心理特点幼儿逻辑思维的发展为学习数学提供了一定的心理准备。同时,幼儿逻辑思维发展的特点又使幼儿在建构抽象数学知识时发生困难。为此,必须借助于具体的事物和形象在头脑中逐步建构一个抽象的逻辑体系;必须不断努力摆脱具体事物的影响,使那些和具体事物相联系的知识能够内化于头脑,成为具有一定概括意义的数学知识。

  这样,幼儿学习数学的心理特点,就具有一种过渡的性质。具体表现为以下几点。

  (一)从具体到抽象数学知识是一种抽象的知识,它的获得需要摆脱具体事物的其他无关特征。例如,幼儿掌握"5"这一数量属性,是幼儿在摆脱了"5个橘子"、"5个苹果"、"5个人"……任何数量是5的物体中有关事物的其他特征后,概括(需要成人的帮助)出的有关这些事物的数量共性。但是幼儿对于数学知识的理解恰恰需要借助于具体的事物,甚至借助于动作从对具体事物的抽象中获得,因而也不可避免地要受到具体事物的影响。比如,问一个两三岁的儿童,"你家里一共有几个人?"他能列举出"家里有爸爸、妈妈,还有我",却回答不出"一共有3个人"。这说明这时的幼儿还不能从事物的具体特征中摆脱出来,从面抽象出数量特征。

  幼儿的这一困难不仅在小班,在较大的时候也同样存在。大班幼儿在学习编应用题时,往往会忘记题目的本质的数量关系,而过分注意问题情境的细节。在学习数的组成时,也会受日常经验中的平分观念的影响。一个幼儿在学习"3的分合"时,认为3不能分成两份,"因它不好分,除非多一个下来"。


互联网 baby611.com
  • 幼儿园教案_分类
  • 关注我们
  • 本类随机推荐
  • 最新教案专题
  • 幼儿园课件
  • 幼教微信群